Basis in invariant subspace of analytical functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear operators with an invariant subspace of functions

Let us denote V, the finite dimensional vector spaces of functions of the form ψ(x) = pn(x)+ f(x)pm(x) where pn(x) and pm(x) are arbitrary polynomials of degree at most n andm in the variable x while f(x) represents a fixed function of x. Conditions onm,n and f(x) are found such that families of linear differential operators exist which preserve V. A special emphasis is accorded to the cases wh...

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

Continuous-time subspace system identification using generalized orthonormal basis functions

This paper proposes a new subspace identification algorithm for continuous-time systems using generalized orthonormal basis functions. It is shown that a generalized orthonormal basis induces the transformation of continuoustime stochastic systems into discrete-time stochastic systems, and that the transformed noises have the ergodicity properties. With these basic observations, the standard su...

متن کامل

Analytical and Numerical Advances in Radial Basis Functions

Radial basis function (RBF) approximations have been used for some time to in-terpolate data on a sphere (as well as on many other types of domains). Theirability to solve, to spectral accuracy, convection-type PDEs over a sphere has beendemonstrated only very recently. In such applications, there are two main choicesthat have to be made: (i) which type of radial function to...

متن کامل

An Invariant Subspace Theorem

for every rational function ƒ with poles off K. In this note it is shown that any operator for which the spectrum is a spectral set has a nontrivial invariant subspace. In [6] von Neumann introduced the notion of spectral set and showed that if T has II T\\ = 1 then the closed unit disc, D"~, is a spectral set for T. For this reason any operator whose spectrum is a spectral set is called a von ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ufa Mathematical Journal

سال: 2018

ISSN: 2074-1863,2074-1871

DOI: 10.13108/2018-10-2-58